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Abstract In this paper we derive a model for the evolution of the particle radius density for a
system of many particles that evolve according to the Mullins–Sekerka problem. The derived
model is a correction of the classical LSW theory that takes the effect of the fluctuations of
the particle density into account. The main difference between the model derived in this
paper and the classical LSW theory is the presence of a second order term which yields a
boundary layer effect for large particles. In particular this model provides a possible solution
for the so-called “selection problem” in the LSW theory.

Keywords Kinetics of phase transitions · Domain coarsening · Fluctuations of large
particles

1 Introduction

Ostwald ripening denotes the late stage coarsening of heterogeneously nucleated particles
within a first order phase transition. If the particle phase is very dilute, one can use the
classical theory by Lifshitz, Slyozov and Wagner (LSW) [6, 16] to describe the evolution of
the distribution of particle radii by a mean-field equation
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where f1 = f1(R1, t) is the one-particle distribution function and 〈R〉 the mean radius. The
model is based on the assumption that each individual particle interacts with all surrounding
particles only by some average mean-field which is the same for all the particles. The LSW
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model has a scale invariance and a family of self-similar solutions which all predict a rate of
growth for the average particle radius of the form 〈R〉 ∼ Ct1/3. While it has been predicted
in [6, 16] that only one of these self-similar solutions is stable, it is by now well-known
[3, 11] that the asymptotic behavior of solutions depends sensitively on the initial data.
More precisely it depends on the largest particles, and even non-self-similar asymptotics
can appear for certain types of data.

This lack of a selection criterion of self-similar solutions was the motivation to investigate
additional effects which have not been taken into account in the LSW model (see also [15]
for further aspects such as comparison with experiments).

In [9, 14] diffusion in the space of radii due to nucleation of particles are taken into
account, which yields via an asymptotic analysis a selection of the LSW solution as the only
possible self-similar state. In [2] an asymptotic analysis of the different time regimes in a
Becker–Döring model is performed, which predicts a quite narrow size distribution as initial
data for the coarsening regime.

In [7] a perturbative theory, in the following referred to as Marder’s theory, has been de-
veloped, which takes the build up of correlations between particles in systems with positive
volume fraction into account. This theory has also been rederived in a mathematically more
rigorous way in [4]. However, as it is pointed out in the review article [10], this theory is
not self-consistent since it assumes that correlations between particles are uniformly small.
Such an assumption, even if true initially, does not remain satisfied during the evolution for
the largest particles in the system.

Thus, the effect of pair correlations between the largest particles has to be studied by
different methods, introducing a suitable boundary layer. In this paper we present a method
that allows to consistently derive a corresponding model from the full many-particle system,
which will consist of the LSW model plus an additional second order term which is only
relevant for the largest particles. The resulting model is to leading order of the form
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(1.1)

where D(R, t) is a coefficient which is determined via a complicated integral equation (see
(3.73) for details) and is of order O(φ1/2) if φ denotes the volume fraction of particles. The
model (1.1) is self-consistent and has a unique self-similar solution which is a perturbation
of the self-similar solution singled out by LSW. Hence, even though a rigorous proof is
eluding, this fact strongly suggests that the equation provides a selection criterion.

In the following Sect. 2 we first present the starting point of our analysis, which is a
simplified Mullins–Sekerka evolution for spherical particles. We briefly review the main
aspects of the LSW theory and give a brief account of Marder’s theory. We also refer to
the review article [10] for a more exhaustive summary of the derivation of the theory, its
advantages and disadvantages and for further references. Section 3 is the main part of this
paper, which contains a derivation of the model which takes fluctuations of largest particles
into account. The final result is presented in Sect. 3.7. In Sect. 4 we show, that the model
has a self-similar solution which is a perturbation of the LSW self-similar solution with a
Gaussian tail.
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2 Basic Concepts

2.1 Evolution Equations

The starting point of our analysis is the so-called Mullins–Sekerka problem

�u = 0, x ∈ � \
⋃

i

BRi
(xi), (2.1)

u = 1

Ri

, x ∈ ∂BRi
(xi), (2.2)

Vn = ∂u

∂n
, x ∈ ∂BRi

(xi) (2.3)

where, � ⊂ R
3, n is the outer normal, xi is the center of the particle i and Ri is its radius.

Throughout this paper we will consider the case that the volume fraction of the particles,
denoted by φ, is small, that is φ � 1. The evolution under the set of equations (2.1–2.3)
does not preserve the position of the center of the particles or its sphericity. However, in the
case of small volume fraction it has been shown in [1] that these are effects of higher order
than considered in this paper (cf. also [7], where an argument is given that the error is of
order φ2/3). This justifies to replace (2.3) by

Ṙi = 1

|∂BRi
(xi)|

∫
∂BRi

(xi )

∂u

∂n
dSx. (2.4)

For definiteness we assume from now on that � in (2.1) is the unit cube enclosing the
particles under consideration and that u satisfies periodic boundary conditions.

The model (2.1), (2.2), (2.4) is equivalent to a system of ODEs that we can write as

dxi

dt
= 0, (2.5)
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where Cj,i are the electrostatic capacity coefficients (see e.g. [5]) defined as

Cj,i := −
∫

∂BRj
(xj )
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∂n
dSx (2.7)

where vi is the solution of

�vi = 0, x ∈ � \
⋃

i

BRi
(xi), (2.8)

vi = δi,j , x ∈ ∂BRj
(xj ) (2.9)

with periodic boundary conditions on ∂�.
The capacity coefficients Cj,i are functions of the positions and radii of all the particles

of the system

Cj,i = Cj,i(x1,R1, x2,R2, . . . , xN ,RN) (2.10)
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and due to the maximum principle satisfy the following properties

Ci,i > 0, Ci,j < 0 if i �= j, Ci,j = Cj,i . (2.11)

Moreover, integrating (2.8) over � \⋃i BRi
(xi), using Green’s formula and the periodic

boundary conditions, we obtain

N∑
j=1

Ci,j = 0 for all i = 1, . . . ,N. (2.12)

Particles might disappear in finite time and the evolution of the system after those events
must be described in order to completely determine the dynamics of the system. We just
eliminate the vanishing particles and continue with the evolution of the remaining ones.
Another singular event that can take place is the collision of two or more particles. However,
the fraction of particles involved in collisions is small (cf. [12]) and we do not consider this
effect in the present paper.

2.2 Stochastic Initial Data

We will assume that the initial values for the variables (xi,Ri) are prescribed by a probability
measure of the form

dν(x1,0,R1,0, x2,0,R2,0, . . . , xN,0,RN,0) ≡
N∏

k=1

f0,N (Rk,0)dxk,0dRk,0 (2.13)

where f0,N is a nonnegative probability density with compact support. (For the normaliza-
tion recall also that |�| = 1.)

We assume that all the particles have a similar order of magnitude r0, where

r0 = 〈R0〉 ≡
∫ ∞

0
Rf0(R)dR/

∫ ∞

0
f0(r) dR (2.14)

is the initial average radius.
We can now formulate the precise problem that we will consider in the rest of the paper.

Our goal is to study the solution of the system of ODEs (2.5, 2.6) where Cj,i is as in (2.7–
2.9) and the initial data x1,0,R1,0, x2,0,R2,0, . . . , xN,0,RN,0 are chosen randomly according
to the measure (2.13) with f0,N as in (2.13), where rN → 0 as N → ∞ and the volume
fraction φ := N (rN)3 is small but fixed.

2.3 Screening Length and Approximation of Ci,j

A crucial length scale in the study of Ostwald ripening is the concept of the screening length
that was introduced in the context of this problem in [8] and is similar to the classical Debye–
Hückel screening length. It can be understood as follows. Suppose that we release a Brown-
ian particle at a point x0 in a perforated domain IR3 \⋃i BRi

(xi) with trapping boundaries
∂BRi

(xi). The screening length ξ is a characteristic distance that measures how far the
Brownian particle diffuses before being trapped in some of the boundaries ∂BRi

(xi). In the
limit of small average radius 〈R〉 and for small volume fraction φ a convenient measure of
the screening length is

ξ = 1√
4πN〈R〉 . (2.15)
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Observe, that in Ostwald ripening, the average radius 〈R〉, the number density N and con-
sequently also the screening length ξ depend on time. For further references we notice that
the ratio of the two length scales 〈R〉 and ξ should be essentially independent of time and
scale as

〈R〉
ξ

∼ O
(√

φ
)
. (2.16)

One way of deriving (2.15) heuristically can be taken from electrostatics. Consider a
point charge at a point x0 = 0 in a sea of conducting balls BRi

(xi) of small volume fraction
which are homogeneously distributed in space with a number density N . The point charge at
0 creates an electric potential G and induces a negative charge on the boundary of the balls.
This induced charge roughly equals −4πRiG(xi), where 4πRi is the capacity of a single
particle in R

3. In a dilute system of balls the capacity of the particles is approximately addi-
tive whence the total negative charge is approximately −4πN〈R〉G(x). Hence, the electric
potential satisfies approximately the equation

−�G(x) = δ(x) − 4πN〈R〉G(x) (2.17)

whose explicit solution is given by

G(x) = e
− |x|

ξ

4π |x| . (2.18)

Equation (2.17) is the basic screening equation that allows to measure the effect of one par-
ticle on the surrounding ones. In [4] it has been shown, that for independently distributed
particles, the error between (2.18) and the exact electric potential is of order φ1/2. In prin-
ciple, the argument is valid only in the whole space. However, we are interested in the case
where the screening length is smaller than the domain size, and then the argument is also
valid (see also [13]).

If we use the approximation (2.18) for the solution of (2.8, 2.9), that is vi(x) = Rie
− |x−xi |

ξ

|x−xi | ,
we find

Cj,i = −4πRjRie
− |xj −xi |

ξ

|xj − xi | , j �= i, (2.19)

while to leading order we can approximate Ci,i by the formula of the electrostatic capacity
of a sphere in the whole space, that is

Ci,i = 4πRi. (2.20)

2.4 Evolution of Statistical Distributions

As indicated in Sect. 2.2 the initial distribution of particles is prescribed using the probability
measure (2.13). The Liouville equation for the distribution density DN of particles is given
by

∂DN

∂t
+

N∑
i=1

[
∂

∂xi

(ẋiDN) + ∂

∂Ri

(ṘiDN)

]
= 0,
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or using (2.5) and (2.6) by

∂DN

∂t
− 1

4π

N∑
i=1

N∑
j=1

[
∂

∂Ri

(
Cj,i

(Ri)
2 Rj

DN

)]
= 0. (2.21)

The initial data DN (·,0)=DN(x1,0,R1,0, x2,0,R2,0, . . . , xN,0,RN,0,0) are given by

dν(x1,0,R1,0, x2,0,R2,0, . . . , xN,0,RN,0)

= DN(x1,0,R1,0, x2,0,R2,0, . . . , xN,0,RN,0,0)

(N)!
N∏

k=1

[dxk,0dRk,0], (2.22)

or, equivalently,

DN (x1,R1, x2,R2, . . . , xN ,RN,0) = N !
NN

N∏
k=1

[f0,N (Rk)]. (2.23)

Notice that with this choice of DN (·,0) we have the normalization

∫
DN (η, t) dNη = N ! (2.24)

where from now on we use the abbreviations

ηj = (xj ,Rj ), η = (η1, η2, . . . , ηN), dηj = dxjdRj , dNη =
N∏

j=1

dηj .

The motivation for the normalization (2.24) is that we want to compute particle densi-
ties instead of probability densities. Therefore DN is the density in the space of ordered
N -tuples (ηi(1), ηi(2), ηi(3), . . . , ηi(N)) where {i(1), i(2), . . . , i(N)} is a permutation of the
integers {1,2, . . . ,N}.

We define the distribution functions for s particles by

fs (η1, η2, . . . , ηs, t) = 1

(N − s)!
∫

DN (η, t) dηs+1dηs+2 · · ·dηN, s = 1,2, . . . ,N

(2.25)
that due to the normalization condition satisfy

∫
fs (η1, η2, . . . , ηs, t) dη1dη2 · · ·dηs = N !

(N − s)! , (2.26)

such that in particular
∫

f1dη1 = N . Integrating (2.21) with respect to the variables
ηs+1, ηs+2, . . . , ηN and using (2.25) we obtain

∂fs

∂t
− 1

4π

s∑
i=1

∂

∂Ri

⎛
⎝ 1

(Ri)
2

⎡
⎣
⎛
⎝ 1

(N − s)!
∫ ⎛
⎝ N∑

j=1

Cj,i

Rj

⎞
⎠DNdηs+1dηs+2 · · ·dηN

⎞
⎠
⎤
⎦
⎞
⎠= 0

(2.27)
for s = 1,2, . . . ,N.
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2.5 LSW Theory

The LSW theory provides a closed equation for the one-particle distribution function f1. It
is based on the assumption that the measure DN is approximately uncorrelated during the
whole evolution of the system, i.e. that it has the form

DN (η1, η2, . . . , ηs, t) =
N∏

k=1

[
f1 (Rk, t)

]
. (2.28)

That f1 is independent of x is due to the fact that the system is homogeneous. Now we use
(2.27) for s = 1 and (2.28) to find

∂f1(R1, t)

∂t
− 1

4π

∂

∂R1

(
1

(R1)2

C1,1

R1
+ 1

R2
1

∫
C1,2

R2
f1(R2, t) dx2 dR2

)
= 0. (2.29)

Employing the approximations (3.7) and (3.8), we find, due to

∫
e

− |x1−x2 |
ξ

|x1 − x2| dx2 ∼ 4πξ 2,

and the relation 4πξ 2 = 1
N〈R〉 implies that

∂f1 (R1, t)

∂t
+ ∂

∂R1

((
− 1

(R1)
2 + 1

〈R〉R1

)
f1 (R1, t)

)
= 0, (2.30)

which is just the classical LSW model. It is well known that it admits a family of self-similar
solutions of the form

f1(R1, t) = φ
1

t4/3
�γ

(
R1

t1/3

)
, 〈R〉 = (γ t)1/3 (2.31)

with γ ∈ (0, 4
9 ]. Each of the profiles �γ has compact support, the largest support for γ = 4

9 .
For each γ ∈ (0, 4

9 ) there is a unique p ∈ (−1,∞) such that �γ behaves like a power law of
power p at the end of its support, whereas for γ = 4

9 we obtain

�LSW := � 4
9
(ρ) = C

ρ2 exp[ −ρ

ρLSW −ρ
]

(1 + ρ

2ρLSW
)7/3(1 − ρ

ρLSW
)11/3

, for 0 ≤ ρ ≤ ρLSW =
(

3

2

)1/3

,

where C is a normalization constant such that 4π
3

∫
ρ3�LSW (ρ)dρ = 1. We call this solution

�LSW since it was singled out by LSW as the unique stable self-similar solution. While Wag-
ner rules out—seemingly by some numerical error—the existence of solutions for γ < 4

9 ,
Lifshitz and Slyozov realized their existence, but argued that only �LSW would be stable.
The argument includes additional regularization terms by accounting for encounters of par-
ticles.

After a lively discussion in the applied literature in the end of the eighties, it was predicted
in [3] by numerical simulation and shown rigorously in [11] that all self-similar solutions
can appear as the large time limit of (2.30). Roughly speaking, a solution converges to the
self-similar solution with a certain power law at the end of its support if the initial data have
the same power law behavior (more precisely, if they are regularly varying with the same
power) at the end of their support.
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2.6 Marder’s Theory

In [7] Marder considers the BBGKY-hierarchy for the N -particle distribution function. Un-
der a closure assumption a closed system of equations for f1 and f2 is derived, which takes
the build up of correlations between particles into account. The same model has been red-
erived under a natural closure assumption in a mathematically more rigorous way in [4]
(see Sect. 3.2.2). The assumption is that the N -particle distribution is given by a cluster ex-
pansion, in which pair correlations are of order φ1/2 and higher order correlations are even
smaller. It is easily checked that the model is self-consistent in a regime where f1(R) is of
order 1. However, it was realized later (cf. e.g. [10]), that the model is not self-consistent for
the largest particles where f1(R) is small. For the largest particles correlations become of
order O(1) during the evolution, even if they are small for the initial data. Thus, a boundary
layer appears for the largest particles in the system and it is not enough to study the hierarchy
of distribution functions or, equivalently, of the correlation functions. In the next section we
will describe how one can correct the LSW model in order to take this effect into account.

3 A Correction to the Mean-Field Model for Large Particles

3.1 Heuristics

Let us first sketch the main ideas of the paper in non-technical terms. The rate of growth of
the particles Ṙ can be approximated by the sum of independent stochastic variables, whose
randomness arises from the fact that particles are randomly distributed. The particles affect-
ing the dynamics of a given particle are those included within the screening radius ξ. The
number of those particles is of order 1√

φ
and therefore becomes unbounded as φ → 0. Due

to the law of large numbers this sum of independent contributions approaches its average
which is the value given by the LSW mean-field approximation. However, due to the finite-
ness of the number of particles involved this sum has some deviations from its mean value.
Therefore, Ṙ is not a deterministic quantity but a stochastic variable whose typical devia-
tion converges to zero as φ → 0. Moreover, due to the fact that the number of particles is
halved in a time interval of order 〈R〉3, the spatial configuration surrounding a given particle
changes completely in this time scale. Equivalently we can say that the screening length ξ

doubles and as a consequence the configuration of particles affecting a given one is different.
Therefore, the deviations of Ṙ from its LSW mean-field value are uncorrelated in this time
scale, or in other words the “noise memory” is erased in times scales of order 〈R〉3.

These deviations of the mean-field theory will provide a kind of noise that will appear
in the corrected LSW theory we obtain in this paper (cf. (3.73)). The order of magnitude of
this corrective term will be

√
φ. Indeed, our perturbation parameter is the volume fraction

φ occupied by the grains. For convenience we recall the scalings of the crucial quantities.
With 〈R〉 we denote the average radius at time t and then the density N of particles has the
scaling φ〈R〉3 whence the number of particles within the screening radius is of the order
Nξ 3 = φ−1/2. By the definition of the screening length the interaction of one grain with its
neighbors within the screening radius is of order O(1). Hence, the contribution from one
single particle is O(φ1/2).

We can then assume that to leading order the contributions of the other particles to the rate
of growth of one particle are independent stochastic variables. This is due to the randomness
of the positions and radii of the particles. The order of magnitude of the average and the
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typical deviations of these individual corrections is of order O(φ1/2). Hence the deviation
from the average contribution of all the particles is of order

√√√√φ−1/2∑
1

(
φ1/2

)2 ∼ φ1/4.

This is the expected order of magnitude for the noise term and correspondingly we can
indeed expect a correction of order O(φ1/2) in the respective Fokker–Planck equation.

It turns out that our model (cf. (3.73)) is more regular than the original LSW mean-field
model. More precisely we will argue in Sect. 4 that there is a unique self-similar solution for
each value of the volume fraction φ. It is a perturbation of the smooth self-similar solution
of the LSW model with a Gaussian tail. Even though we do not prove a corresponding result
this fact indicates that our model provides a solution of the selection problem in the LSW
theory.

From the technical point of view there are some new tools that we introduce in this paper.
It is common to analyze many-particle systems with weak interactions by using the so-called
cluster expansions which are based on the assumption that the two-particle distribution func-
tion f2(η1, η2; t) as defined in (2.27) can be expanded as

f2(η1, η2; t) = f1(η1, t)f1(η2, t) + g2(η1, η2; t), (3.1)

where

g2(η1, η2; t) � f1(η1, t)f1(η2, t). (3.2)

It was however recognized in [10] that this expansion cannot be satisfied for the largest
particles. We have found that in order to use perturbation arguments for the largest particles
it is more convenient to relate the two-particle distribution function f2(η1, η2; t) with the
function f1 using the functions U1, U2 which will be introduced in (3.18, 3.19). These
functions measure the effect on a given particle η1 by another particle η2. Since the relative
effect of each particle on the ones within the screening radius is of order

√
φ we can expect

that the functions U1, U2 have the same order of magnitude. Moreover, these functions are
deterministic to leading order. Using the definition of the functions U1, U2 we will be able
to write formulas like (3.21) and (3.22) that in our approach will play a role analogous to
the cluster expansion (3.1, 3.2) but without having the difficulties mentioned above.

The rest of Sect. 3 is rather technical. In order to make it easier for the reader to follow
the main line of the arguments, we indicate here the main ideas.

We first introduce in Sect. 3.2 dimensionless variables and rescaled quantities which are
of order O(1) in the parameter φ. As a consequence it will be easier to identify the small
terms in the resulting equations.

Next, in Sect. 3.3 we introduce a small technical trick. It is more convenient to work
with a fixed number of particles. To this end, we will define a “ghost” evolution for particles
even after they had vanished. This has a further advantage. The size of a grain is due to
the interactions with another particles in its past. Therefore, at any given time the noise
terms that determine the size of a particle are due to particles that have long ago vanished
in the past in a stochastic manner. The “ghost” evolution of the vanishing particles will be
mathematically convenient in order to compute the “noise” terms produced by the particles
before vanishing.

Section 3.4 contains the derivation of a basic closure relation that we will use to derive
the evolution equation of the one-particle distribution function f1. It has been seen in [10]
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that closure relations having the form (3.1) and assume g2 � f2, lead to contradictions. In
order to avoid these difficulties we will derive a different type of closure relation having the
form (3.24). The last term in (3.24) provides some measure of the correlations between the
particles η1 = (x1,R1) and η2 = (x2,R2). The particles at distances much larger than the
screening length do not interact, and using the fact that for distributions of particles with
a growing average radius the screening length grows in a similar way, it will be seen in
Sect. 5.3.2 that the last term in (3.24) is negligible. Therefore (3.24) will provide a relation
between

∫
f2(η1, η2, t)dR2 and

∫
f1(η1 + √

φU1, t)f1(η2, t)dR2, where the function U1 =
U1(η1, η2, t) gives a measure of the different evolutions that result for the particle η1 if the
particle η2 is kept or eliminated of the system. Notice that this type of closure relation is
different from the usual “cluster expansion” (3.1).

Section 3.5 is devoted to the computation of the function U1. To this end the effect in the
evolution of the particles due to the elimination of particle η2 must be computed. Since the
contribution of each particle is small this problem can be solved by perturbation methods.
One of the technical points that must be solved is the computation of the change in the
capacity coefficients due to the elimination of a particle from the system.

Section 3.6 formulates the evolution equation for the one-particle distribution function.
As a first step an equation is derived for f1 in terms of a new function �2 that is the average
of the capacity coefficients C1,2 with respect to the remaining particles η3, . . . , ηN (cf. (3.46,
3.47)). If the coefficients C1,2 were only a function of the two particles η1, η2 the function
�2 could be written in terms of f2. However, the coefficients C1,2 are also a function of
the position of the remaining particles η3, . . . , ηN and, as a consequence the computation
of �2 is a bit more involved. A procedure for computing this function using a monopole
approximation is developed in Sect. 3.6.2. With this result we can derive (3.63) for the
distribution function f1.

Finally, in Sect. 3.7 we combine the computation of U1 in Sect. 3.5 to transform the
equation for f1 derived in Sect. 3.6 to obtain the system of (3.72, 3.73).

3.2 Dimensionless Variables

It is convenient to go over to dimensionless variables. We have to be careful, however, since
the typical length scales change over time. We will denote by r0 and N0 the typical particle
radius and number density at a given time for which the equations are derived. Then the
screening at this time is given by ξ0 = 1√

4πr0N0
.

We introduce now the rescaled variables

x̂ := x

ξ0
, R̂i := Ri

r0
and t̂ := t

r3
0

. (3.3)

Notice, that with these definition R̂i is a quantity of order O(1) but not the real radius of
the particle which in view of (2.16) is

√
φR̂i . Similarly we introduce the following rescaled

capacity coefficients

Ĉi,i := Ci,i

r0
and Ĉi,j := Ci,j√

φr0
for i �= j, (3.4)

which again are not the true capacity coefficients but rescaled quantities which are of order
O(1).

The number densities in the new variables are given by

D̂N := (
r0ξ

3
0

)N
DN, f̂N := (

r0ξ
3
0

)N
fN and f̂s := (

r0ξ
3
0

)s
fs . (3.5)



J Stat Phys (2008) 130: 415–453 425

We also introduce a rescaled screening length

ξ̂ := ξ

ξ0
(3.6)

and notice that the above rescaling implies that that the rescaled number density scales as
N̂(t) = ∫∞

0 f̂1(R̂) dR̂ ∼ O(φ−1/2). Furthermore we denote by

Ĝ(x̂) = 1

4π |x̂|e
− |x̂|

ξ̂ = r0√
φ

G(x).

As a consequence of these definitions we can rewrite the approximations (2.19) and (2.20)
as

Ĉi,j = −(4π)2R̂iR̂j Ĝ(x̂i − x̂j ) (3.7)

and

Ĉi,i = 4πR̂i. (3.8)

As it is common, we go from now on over to the rescaled variables and drop the hats in
the following.

3.3 Defining a Formal Evolution for Extinct Particles

As described above it is more convenient to work with a system containing a fixed number
of particles, in order to avoid handling distribution functions with a changing number of
variables. To this end we define artificially the evolution of the particles that vanish during
the evolution of the system. The evolution of nonextinct particles is given by (2.5, 2.6). We
define the evolution of the extinct particles by

dRi

dt
= − 1

(Ri)
2 + 1

〈R〉Ri

, i = 1, . . . ,N, (3.9)

dxi

dt
= 0, i = 1, . . . ,N. (3.10)

Notice, that (3.9) implies that if Ri(t∗) ≤ 0 for some t∗, that then Ri(t) < 0 for all t > t∗.
We will also assume that a missing particle does not interact with the remaining ones, or

equivalently

Ci,j = 0, i �= j (3.11)

if Ri > 0 and Rj ≤ 0.
From the physical point of view extinct particles are important because during their life

span they contribute to the “noise” that influences the evolution of the surviving particles.
Equations (3.9, 3.10) will keep track of this effect. However, there are other methods of
introducing this physical effect in the model. The definition of the artificial evolution (3.9,
3.10) is just a convenient mathematical trick.

In the rest of this section we will describe the evolution of the system of particles whose
initial distribution

Ri (0) = Ri,0, xi (0) = xi,0 (3.12)

is determined by means of the density function (2.23) and where the particles evolve by
means of the differential equations (2.5, 2.6, 3.9, 3.10). Notice that all the arguments in
Sect. 2.4 might be applied to this problem.
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3.4 A Closure Relation

A key ingredient in our analysis will be a certain closure relation which provides an approx-
imation of the two-particle distribution function f2 by f1 evaluated at a suitable shift in R1

plus an additional term which will turn out to be negligible in the self-similar regime. In this
subsection we will derive this closure relation. The main task in the following subsections
will be to explicitly compute the shift to leading order in terms of f1.

3.4.1 A New Set of Variables

We now introduce two sets of “Eulerian” variables that allow to integrate the Liouville equa-
tion (2.21). More precisely we define a new set of variables

ηk,0 = ηk,0(η1, η2, η3, . . . , ηN , t), k = 1, . . . ,N (3.13)

that are the initial values for the characteristic equations of the Liouville equation (2.5, 2.6).
The solution of the Liouville equation (2.21) can be written in terms of these new variables
as

DN(η1, η2, η3, . . . , ηN , t) = DN(η1,0, η2,0, η3,0, . . . , ηN,0,0)
∂(η1,0, η2,0, η3,0, . . . , ηN,0)

∂(η1, η2, η3, . . . , ηN)

= (N)!
NN

N∏
k=1

[
f0,N (Rk,0)

] ∂(η1,0, η2,0, η3,0, . . . , ηN,0)

∂(η1, η2, η3, . . . , ηN)
. (3.14)

Equation (3.14) just follows from the conservation of the number of particles in an evolv-
ing element of the space of variables with volume dη1 · · ·dηN . This is analogous to the
derivation of the continuity equation in the classical theory of fluid flows.

With the changes of variables

(η1, η2, η3, . . . , ηN) → (η1, η2,0, η3,0, . . . , ηN,0),

(η1, η2, η3, . . . , ηN) → (η1, η2, η3,0, . . . , ηN,0)

we can rewrite (2.27), using (3.14), in the limit N → ∞ as

f1(η1, t) = 1

N

∫ 2∏
k=1

[
f0,N (Rk,0)

] ∂(η1,0)

∂(η1)
dη2,0dνN, (3.15)

f2(η1, η2, t) =
∫ 2∏

k=1

[
f0,N (Rk,0)

] ∂(η1,0, η2,0)

∂(η1, η2)
dνN, (3.16)

where

dνN ≡ 1

NN−2

N∏
k=3

[
f0,N (Rk,0)

]
dη3,0dη4,0 · · ·dηN,0.

From now on we will write for simplicity

ω0,N = (η3,0, η4,0, . . . , ηN,0).
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We define two functions R1,0, R2,0 defined as the values of the initial radii R1 and R2 for
particles characterized by the values η1 and η2 at time t. These functions depend also on the
initial positions of the remaining particles ω0,N , so that

R1,0 = R1,0(η1, η2,ω0,N , t),

R2,0 = R2,0(η1, η2,ω0,N , t).

Using the functions R1,0 and R2,0 we can rewrite (3.16) as

f2(η1, η2, t) =
∫ 2∏

k=1

[
f0,N

(
Rk,0(η1, η2,ω0,N , t)

)] ∂(R1,0,R2,0)

∂(R1,R2)
dνN . (3.17)

In the following we denote by R
(2)

1,0 = R
(2)

1,0(η1,ω0,N , t) the function R1,0 in a system

where particle 2 has been removed. Correspondingly we define R
(1)

2,0.

3.4.2 The Shift Map U

In order to compute f2(η1, η2, t) for particles η1 and η2 which are placed within the screen-
ing radius we introduce two functions Ui = Ui(η1, η2,ω0,N , t), i = 1,2 via the definition

R1,0(η1, η2,ω0,N , t) = R
(2)

1,0(η1 +√
φU1,ω0,N , t), (3.18)

R2,0(η1, η2,ω0,N , t) = R
(1)

2,0(η2 +√
φU2,ω0,N , t), (3.19)

where we use the notation ηi + √
φUi = (Ri + √

φUi, xi), i = 1,2. Notice that Ui → 0
if |x1 − x2| � max{0≤s≤t} ξ (s) . In Sect. 3.5 we will show that indeed the terms Ui have
a relative size of order O(1) as φ → 0. Moreover, it turns out that to leading order the
functions Ui depend only on η1, η2 and t , but not on ω0,N .

3.4.3 The Closure Relation

Combining (3.17), (3.18) and (3.19) we obtain

f2 (η1, η2, t) =
∫ 2∏

k=1

[
f0,N

(
R

(τk)

k,0

(
ηk +√

φUk,ω0,N , t
))]

(3.20)

× ∂(R
(2)

1,0(η1 + √
φU1,ω0,N , t),R

(1)

2,0(η2 + √
φU2,ω0,N , t))

∂(R1,R2)
dνN

where we use the notation τ1 = 2 and τ2 = 1.
By expanding the Jacobian in (3.20) we can rewrite the equation, keeping only the terms

up to order
√

φ, as

f2 (η1, η2, t) =
[

1 +√
φ

2∑
j=1

∂Uj

∂Rj

]∫ 2∏
k=1

[
f0,N

(
R

(τk)

k,0

(
ηk +√

φUk,ω0,N , t
))

× ∂R
(τk)

k,0 (ηk + √
φUk,ω0,N , t)

∂(Rk + √
φUk)

]
dνN . (3.21)
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We integrate (3.21) with respect to R2 and neglect lower order terms to find

∫
f2 (η1, η2, t) dR2 =

∫ (∫ 2∏
k=1

F
(
ηk +√

φUk,ω0,N , t
)
dνN

)
dR2 (3.22)

where

F(ηk,ω0,N , t) = f0,N

(
R

(τk)

k,0

(
ηk,ω0,N , t

)) ∂R
(τk)

k,0 (ηk,ω0,N , t)

∂Rk

. (3.23)

We are going to derive a second-order evolution equation for f1 (see (3.63) below), where
the second-order term will only play a relevant role in a small boundary layer. Therefore,
such boundary layers will give a negligible contribution in the integration with respect to the
R2 variable and it is possible to approximate (3.22) to leading order by

∫
f2 (η1, η2, t) dR2 =

∫ (∫
F
(
η1 +√

φU1,ω0,N , t
)

F(η2,ω0,N , t)dνN

)
dR2.

Using (3.22) and that F(η2,ω0,N , t) is a stochastic variable with average f1(η2, t) with
respect to the measure dνN , we find

∫ (∫
F
(
η1 +√

φU1,ω0,N , t
)

F(η2,ω0,N , t)dνN

)
dR2

=
∫ (∫

f1

(
η1 +√

φU1, t
)

f1 (η2, t) dνN

)
dR2

+
∫ (∫ [

F
(
η1 +√

φU1,ω0,N , t
)

−f1

(
η1 +√

φU1, t
)] [

F(η2,ω0,N , t) − f1(η2, t)
]
dνN

)
dR2.

Hence we have to leading order that
∫ (∫

F
(
η1 +√

φU1,ω0,N , t
)

F(η2,ω0,N , t)dνN

)
dR2

=
∫

f1

(
η1 +√

φU1, t
)

f1 (η2, t) dR2

+
∫ (∫ [

F(η1,ω0,N , t) − f1 (η1, t)
] [

F(η2,ω0,N , t) − f1 (η2, t)
]
dνN

)
dR2 (3.24)

The right hand side of (3.24) consists of two different types of terms. The first one measures
the change of the radius of particle η1 due to the presence of the particle η2 and will be
computed in the next Sect. 3.5. The second one comes from the fluctuations of F and will
be computed and estimated in Appendix 3, Sect. 5.3.1.

3.5 Computing U1(η1, η2, t)

The goal of this section is to compute to leading order the function U , which was introduced
in (3.18) and which measures the effect on the evolution of particle η1 due to the presence
of particle η2.
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3.5.1 The Definition of ri

We recall that the evolution of the radii Ri is given (cf. (2.6) and (3.8)) by

dRi

dt
= − 1

(Ri)
2 −

√
φ

Ri

N∑
j �=i

Ci,j

4πRiRj

, i = 1, . . . ,N, (3.25)

R1
(
t̄
)= R̄1, R2

(
t̄
)= R̄2, Rk,0 (0) = Rk,0. (3.26)

It is natural to ask why we choose the values of the radii of the particles at the time t̄

instead of at the initial time t = 0. The reason is that we want to derive equations which
describe the additional “noise” terms that are valid for arbitrarily long times in the self-
similar regime. Due to the effect of the “noise” particles which have initially similar radii
can be very different at the stage when they interact. For this reason it is convenient to refer to
the radii of the particles at the time t̄ that is, roughly speaking, the time when the considered
set of particles becomes comparable to the average radius and enters the “vanishing” regime.
We think of t̄ as the time in which we want to describe the distribution of particles. We want
to take t̄ to infinity, or equivalently, if we normalize t̄ as the time when we look the particles,
to send the initial time to −∞. The idea of referring all the distributions to the time t̄ has
many advantages. Since the screening radius is increasing, the particles that are interacting
for times of order t̄ were not interacting for much smaller times (since the screening length
was much smaller). In particular the “memory of the past” of the particles is erased and it
does not need to be taken into account. Due to this reason the values of the initial data, that
are difficult to control for very long times, are not relevant at all.

The radii of the particles in the system without particle η2 are given by

dR
(2)
i

dt
= − 1

(R
(2)
i )2

−
√

φ

R
(2)
i

N∑
j �=i,2

C
(2)
i,j

4πR
(2)
i R

(2)
j

, i = 1, . . . ,N, i �= 2 (3.27)

with the same initial data as in (3.26) except for the fact that the particle η2 has been re-
moved. The coefficients C

(2)
i,j are the corresponding capacity coefficients with positions xi

and radii R
(2)
i .

We write

ri = ri

(
t, t̄ , η̄1, η̄2,ω0,N

) := Ri − R
(2)
i√

φ
. (3.28)

We will see in the next subsection that indeed ri ∼ O(1).

3.5.2 Equation for ri

We obtain with (3.25) and (3.27) after a linearization that to leading order ri satisfies

dri

dt
= 2

(R
(2)
i )3

ri + ri

(R
(2)
i )2

N∑
j �=i,2

C
(2)
i,j

4πR
(2)
i R

(2)
j

− 1

R
(2)
i

N∑
j �=i,2

[
Ci,j

4πRiRj

− C
(2)
i,j

4πR
(2)
i R

(2)
j

]
− Ci,2

4π (Ri)
2 R2

. (3.29)
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We approximate the last term in (3.29) by the expression (3.7), that is we use

Ci,2 = −(4πRi) (4πR2)G(xi − x2). (3.30)

To compute the second last term in (3.29) we need to compute the difference [ Ci,j

4πRiRj
−

C
(2)
i,j

4πR
(2)
i

R
(2)
j

] for i �= j . In Appendix 1 we show (cf. (5.6)) that

Ci,j

4πRiRj

− C
(2)
i,j

4πR
(2)
i R

(2)
j

=√
φ (4πR2)4πG(xi − x2)G(x2 − xj )

+ φ
∑

k �=i,j,2

C
(2)
i,k C

(2)
k,j

4π(R
(2)
k )2

rk

4πR
(2)
i R

(2)
j

, j �= i,2. (3.31)

Using (3.30) and (3.31) in (3.29) we find

dri

dt
= 2

(R
(2)
i )3

ri + ri

(R
(2)
i )2

N∑
j �=i,2

C
(2)
i,j

4πR
(2)
i R

(2)
j

− (4πR2)

R
(2)
i

G (xi − x2)
√

φ

N∑
j �=i,2

4πG(x2 − xj )

− φ

R
(2)
i

∑
k �=i,j,2

[
N∑

j �=i,2

C
(2)
i,k C

(2)
k,j

(4π)2 (R
(2)
k )2R

(2)
i R

(2)
j

]
rk + 4π

R
(2)
i

G (xi − x2) . (3.32)

In the last term we also replaced Ri by R
(2)
i , which is admissible since we only need the

leading order terms. We also recall that G(x2 − xj ) is to be read as G(x2 − xj )χ{Rj >0}, that
is we only sum over the particles with Rj > 0.

Since
∫

G(x)dx = ∫
G(x − y)dx = ξ 2 we can approximate

√
φ

N∑
j �=i,2

4πG(x2 − xj ) = 4π
√

φ

∫
{R1>0}

f1 (R1, t) dR1

∫
G(x2 − y)dy = 1

〈R〉 .

We also use the approximation (3.7) in order to approximate the second and fourth term
on the right hand side of (3.32). Therefore, using similar integral approximations as before,
we obtain

dri

dt
= a

(
R

(2)
i

)
ri −

√
φ

R
(2)
i 〈R〉

∑
k �=i,2

4πG(xi − xk) rk + 4πG(xi − x2)

R
(2)
i

(
1 − R2

〈R〉
)

(3.33)

for i = 1, . . . ,N, i �= 2, where

a (R) := 2

R3
− 1

〈R〉R2
.

Now we see indeed, that since the last term in (3.33), which is the source term, is of order
O(1) and thence ri = O(1).



J Stat Phys (2008) 130: 415–453 431

Equation (3.33) must be completed with suitable initial and boundary conditions. Taking
into account the initial conditions for R1,R2 and Rk, k = 3, . . . ,N, we obtain

r1

(
t̄
)= 0, (3.34)

ri (0) = 0, i = 3, . . . ,N. (3.35)

3.5.3 Further Approximations

Our goal in this section is to compute ri and Ui to leading order and by this also to show
that Ui depends to leading order only on t̄ , R̄1, R̄2 and x1 − x2.

We now make the following key assumption. The term
√

φ
∑

k �=i,2 4πG(xi − xk) rk con-
tains the sum of many small, roughly independent, contributions. This is due to the fact,
that correlations between the particles are small except for the largest particles. Those are
however few and do not contribute to leading order to the sum. Hence, the above term can
be approximated by

I
(
xi − x2, t, t̄

) :=√
φ
∑
k �=i,2

4πG(xi − xk) rk

where I (x, t, t̄) is a smooth function in x.
Second, we approximate R

(2)
i by RL(t,Ri), where RL is given by

dRL(t, t̄ , R̄)

dt
= − 1

(RL(t, R̄))2
+ 1

〈R〉(t)RL(t, R̄)
, (3.36)

RL(t̄, R̄) = R̄ . (3.37)

We notice that RL also depends on t̄ , but for the sake of a simpler reading we neglect
this dependence in the notation. Such an approximation is valid to leading order as long as
t ∼ O(t̄). For t � t̄ , however, particles η1 and η2 do not interact because for those particles
which are still alive at time t̄ their distance at time t is much larger than the screening length.
Hence, (3.33) can be approximated by

dri

dt
= a (RL (t,Ri)) ri − I (xi − x2, t, t̄ )

RL (t,Ri) 〈R〉 + 4πG(xi − x2)

RL (t,Ri)

(
1 − R2

〈R〉
)

. (3.38)

This equation describes the effect of an additional particle η2 in the system. The last term
measures the direct effect of particle η2 on the particle ηi , whereas the second term on the
right hand side is a mean-field like term, due to the change of the radii of all the other
particles.

Taking into account (3.35) we can approximate ri for i = 3, . . . ,N as

ri

(
t, t̄ , η̄1, η̄2,ω0,N

)=
∫ t

0

exp(
∫ t

s
a (RL (λ,Ri)) dλ)

RL (s,Ri)

×
[

4πG(xi − x2)

(
1 − RL(s, R̄2)

〈R〉 (s)

)
− I (xi − x2, s, t̄)

〈R〉
]

ds (3.39)

for i = 3, . . . ,N. Using the definition of I (x, t) we obtain

I
(
x − x2, t, t̄

)=√
φ
∑
k �=2

4πG(x − xk) rk
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= 4π

∫ t

0

(∑
k �=2

exp(
∫ t

s
a (RL (λ,Rk)) dλ)

RL (s,Rk)
G(x − y)

)

×
[

4πG(xk − x2)

(
1 − RL(s, R̄2)

〈R〉(s)
)

− I (xk − x2, s, t̄)

〈R〉(s)
]
ds

and we can now approximate the sum in this formula by an integral. To this end we remark
that the distribution of radii Rk at time t̄ is f1(R, t̄). On the other hand the distribution of
particles is homogeneous. Therefore, using also the invariance of the problem under trans-
lations, we obtain the following integral equation for I (x, t)

I
(
x, t, t̄

)= 4π

∫ t

0

∫
[0,1]3

∫
{R>R(t,t̄)}

f1

(
R, t̄

) exp(
∫ t

s
a (RL (λ,R)) dλ)

RL (s,R)
G(x − y, t)

×
[

4πG(y, s)

(
1 − RL(s, R̄2)

〈R〉 (s)

)
− I (y, s, t̄)

〈R〉 (s)

]
dRdyds (3.40)

where R(t, t̄) < 0 is the value of the radius such that RL(t,R) > 0 for R > R(t, t̄). Notice
that in (3.40) we are integrating over a set which includes negative particles. The meaning
of this is that extinct particles have generated some noise during their life span.

Taking into account (3.39) it follows that we can approximate ri as

ri

(
t, t̄ , η̄1, η̄2,ω0,N

)= r̄
(
t, t̄ , R̄2,Ri, xi − x2

)
, i = 3, . . . ,N (3.41)

where η̄i = (xi, R̄i) and

r̄
(
t, t̄ , R̄2,R, x

)≡
∫ t

0

exp(
∫ t

s
a (RL (λ,R)) dλ)

RL (s,R)

×
[

4πG(x, s)

(
1 − RL(s, R̄2)

〈R〉 (s)

)
− I (x, s, t̄)

〈R〉 (s)

]
ds. (3.42)

The set of (3.40–3.42) yields the procedure to approximate the change of the radii of the
particles that are within the screening distance of η2. Notice that the function r̄(t, t̄ , R̄2,R, x)

yields also the procedure of computing r1 that is the required change of radius in order to
compute U1. Indeed, (3.34) and (3.38) yield

r1(t, t̄ , η̄1, η̄2,ω0,N ) = −
∫ t̄

t

exp(
∫ t

s
a(RL(λ, t̄ , R̄1))dλ)

RL(s, R̄1)

×
[

4πG(x1 − x2, s)

(
1 − RL(s, R̄2)

〈R〉 (s)

)
− I (x1 − x2, s, t̄)

〈R〉
]

ds.

In particular we have due to (3.28) that

R1,0

(
η̄1, η̄2,ω0,N , t̄

)− R
(2)

1,0

(
η̄1,ω0,N , t̄

)

= r1

(
0, t̄ , η̄1, η̄2,ω0,N

)= − exp

(
−
∫ t̄

0
a
(
RL

(
λ, R̄1

))
dλ

)
r̄
(
t̄ , t̄ , R̄2, R̄1, x1 − x2

)
.

(3.43)
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If we use (3.18) and linearize we obtain

∂R
(2)

1,0

∂R1

(
η̄1,ω0,N , t̄

)
U1 = r1

(
0, t̄ , η̄1, η̄2,ω0,N

)

which together with (3.43) implies

U1

(
t̄ , η̄1, η̄2

)= − exp

(
−
∫ t̄

0
a
(
RL

(
λ, t̄, R̄1

))
dλ

)
r̄(t̄ , t̄ , R̄2, R̄1, x1 − x2)

∂R
(2)
1,0

∂R1

.

The term
∂R

(2)
1,0

∂R1
can be approximated to leading order using the approximation R

(2)

1,0 ≈
RL(0, t̄ , R̄1). Differentiating (3.36, 3.37) it follows that

∂R
(2)

1,0

∂R1
≈ exp

(
−
∫ t̄

0
a
(
RL

(
λ, R̄1

))
dλ

)
,

whence

U1

(
t̄ , η̄1, η̄2

)= −r̄
(
t̄ , t̄ , R̄2, R̄1, x1 − x2

)=: −U
(
t̄ , R̄2, R̄1, x1 − x2

)
. (3.44)

In particular the desired order of size and structure of U1 follows.

3.6 Evolution Equation for f1

In this section we derive an approximate equation for f1 which will still contain Ui (cf.
(3.63)). We do not use the results of Sect. 3.5. The results of this and the previous section
will be combined in Sect. 3.7.

3.6.1 Basic Equation for f1

In order to compute the evolution equation for f1 we start from the Liouville equation (2.21)
integrated with respect to the variables η2, η3, . . . , ηN , which gives (2.27) with s = 1, that is

∂f1

∂t
− 1

4π

∂

∂R1

(
1

(R1)2

[(
1

(N − 1)!
∫ (

C1,1

R1
+√

φ

N∑
j=2

Cj,1

Rj

)
DNdη2dη3 · · ·dηN

)])
= 0.

(3.45)
Using the approximation (3.8) and the symmetry properties of the capacity coefficients we
obtain

∂f1 (R1, t)

∂t
− ∂

∂R1

(
f1 (R1, t)

(R1)
2

)
− ∂

∂R1

(
1

(R1)
2

∫
�2 (η1, η2)

R2
dη2

)
= 0 (3.46)

with

�2 (η1, η2) = 1

(N − 2)!
√

φ

∫
C1,2DNdη3 · · ·dηN . (3.47)

Here we assume, due to the screening property, that N is large and that the quantity is
independent of N in the limit N → ∞. This assumption is crucial in order to obtain a
closed equation for �2.
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3.6.2 Approximation of �2

We are going to approximate the integral �2(η1, η2) for measures with small correlations in
most of the space of variables except possibly in some small boundary layer.

Let us denote as K(x − xi) the solution of the problem

−�K(x − xi) = [δ(x − xi) − ξ 3
0 ] in � (3.48)

with periodic boundary conditions where � = [0,1/ξ0]. The function K(·) is uniquely de-
termined up to a constant. We choose it such that

K(x) = 1

4π |x| (1 + o(1)) as |x| → 0.

In order to compute the coefficients Ci,j we will use the monopole approximation for
the capacity potentials. One can argue that in the thermodynamic limit, that is ξ0 is much
smaller than the domain size, which is the regime we consider, a good approximation for v1,
say, is

v1(x) =√
φC1,1K(x − x1) + φ

N∑
i=2

C1,iK(x − xi).

Notice that the scalings in φ are due to the fact that we rescaled the capacity coefficients to
be of order O(1) in φ.

For the capacity coefficients we have

C1,1 +√
φ

N∑
l=2

C1,l = 0. (3.49)

Using the boundary condition v1(x) = 0 for x ∈ ∂Bi(xi), yields

√
φ

C1,2

4πR2
+ C1,1K(x2 − x1) +√

φ
∑
l>2

C1,lK(x2 − xl) = 0. (3.50)

If we multiply (3.49) by DN and integrating over η2, . . . , ηN , we obtain

C1,1f1(R1) +
∫

�2(η1, η2) dη2 = 0. (3.51)

Similarly we obtain from (3.50) that

�2(η1, η2)

4πR2
+ C1,1K(x1 − x2)f2(η1, η2) +

√
φ

(N − 3)!
∫

C1,3DNK(x2 − x3)dη3 · · ·dηN = 0.

Let us denote by C
(2)

1,3 the capacity coefficient induced by the particle η1 on the particle η3 if
the particle η2 is eliminated from the system. Then

0 = �2(η1, η2)

4πR2
+ C1,1K(x1 − x2)f2(η1, η2) +

√
φ

(N − 3)!
{∫

C
(2)

1,3DNK(x2 − x3)dη3 · · ·dηN

+
∫ [

C1,3 − C
(2)

1,3

]
DNK(x2 − x3)dη3 · · ·dηN

}
. (3.52)
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The coefficient C
(2)

1,3 is independent of η2. As before we assume that particles whose distance
is larger than the screening length are uncorrelated. Then we obtain in the limit N → ∞

√
φ

(N − 3)!
∫

C
(2)

1,3DNK(x2 − x3)dη3 · · ·dηN = f1 (R2)

∫
�2(η1, η3)K(x2 − x3)dη3. (3.53)

If we combine (3.52) with (3.53) we obtain the following integral equation for �2

�2 (η1, η2)

4πR2
+ f1 (R2)

∫
�2 (η1, η3)K (x2 − x3) dη3 + C1,1K (x1 − x2) f2 (η1, η2)

+
√

φ

(N − 3)!
∫ [

C1,3 − C
(2)

1,3

]
DNK (x2 − x3) dη3 · · ·dηN = 0. (3.54)

Using (5.3) we can argue that the last term on the right hand side of (3.54) is of higher order.
Thus we can approximate (3.54) by

�2 (η1, η2)

4πR2
+ f1 (R2)

∫
�2 (η1, η3)K (x2 − x3) dη3 + C1,1K (x1 − x2) f2 (η1, η2) = 0.

(3.55)
Multiplying (3.55) by 4πR2 and integrating on R2 we obtain

∫
�2(η1, η2) dη2 + 1

ξ 2

∫
K (x2 − x3)

∫
�(η1, η3) dη3

+ C1,1K (x1 − x2)

∫
4πR2f2 (η1, η2) dR2 = 0. (3.56)

Then, eliminating the integral term in (3.55) in �2 with the help of (3.56), integrating the
resulting formula with respect to η2 and using (3.8), we obtain

∫
�2 (η1, η2)

4πR2
dη2 = 1

4π 〈R〉
∫

�(η1, η2) dη2

− (4πR1)

∫
K (x1 − x2) f2 (η1, η2, t)

(
1 − R2

〈R〉
)

dη2. (3.57)

3.6.3 Approximate Equation for f1

In the following we denote

h(η, t) = −F(η, t) + f1 (R, t)

φ1/4
. (3.58)

The analysis in Appendix 3 will justify this scaling.
With (3.58) and (3.44) we can rewrite (3.24) as

∫
f2 (η1, η2, t) dR2 =

∫ (∫
f1(η1 +√

φU, t)f (η2, t) dνN

)
dR2

+√φ

∫
〈h(η1, t) h (η2, t)〉dR2. (3.59)



436 J Stat Phys (2008) 130: 415–453

Similarly we obtain

∫
f2 (η1, η2, t)R2dR2 =

∫ (∫
f1(η1 +√

φU, t)f (η2, t)R2dνN

)
dR2

+√φ

∫
〈h(η1, t) h (η2, t)〉R2dR2. (3.60)

Using (3.59), (3.60) and (3.57) we find
∫

�2(η1, η2)

4πR2
dη2

= − R1

〈R〉f1(R1) − 4πR1

∫
K(x1 − x2)f1(R1 +√

φU)f1(R2)

(
1 − R2

〈R〉
)

dη2

−√
φ4πR1

∫
K(x1 − x2)〈h(η1, t) h(η2, t)〉

(
1 − R2

〈R〉
)

dη2. (3.61)

Taylor expansion in the second and third term on the right hand side yields furthermore

1

4πR1

∫
�2(η1, η2)

4πR2
dη2

= −f1(R1, t)

4π〈R〉

−√
φ

∂f1(R1, t)

∂R1

(∫
K(x1 − x2)U(R1,R2, x1 − x2, t)

(
1 − R2

〈R〉
)

f1(R2)dη2

)

−√
φ

∫
K(x1 − x2)〈h(η1, t) h(η2, t)〉

(
1 − R2

〈R〉
)

dη2. (3.62)

We can now conclude and use (3.61) and (3.62) in (3.46) to find

∂f1 (R1, t)

∂t
− ∂

∂R1

(
f1 (R1, t)

(R1)
2

)
+ ∂

∂R1

(
f1 (R1, t)

R1 〈R〉
)

+√
φ

∂

∂R1

(
4π

R1

(∫
K (x1 − x2)U (R1,R2, x1 − x2, t)

(
1 − R2

〈R〉
)

× f1 (R2) dη2

)
∂f1 (R1, t)

∂R1

)

+√
φ

∂

∂R1

(
4π

R1

∫
K(x1 − x2)〈h(η1, t) h(η2, t)〉

(
1 − R2

〈R〉
)

dη2

)
= 0. (3.63)

We remark that (3.63) contains a term with second order derivatives that is small but plays
a relevant role for the largest particles. The effect of this term will be to introduce boundary
layer effects in the region of largest particles.

3.7 The Final Result

In our last step we use the results from Sect. 3.5 in (3.63). It turns out that we can slightly
simplify the equations which define ψ(t̄, R̄2, R̄1, x1 − x2) and consequently U1. To that aim
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it is convenient to define

J
(
x, s, t̄, R̄2

) := 4πG(x, s)

(
1 − RL

(
s, R̄2

)
〈R〉 (s)

)
− I (x, s, t̄)

〈R〉 (s)
, (3.64)

H
(
t, s, t̄

) :=
∫

{R>R(t,t̄)}
f1(R, t̄)

exp(
∫ t

s
a(RL(λ,R))dλ)

RL(s,R)
dR. (3.65)

With these definitions (3.40) can be expressed as

J
(
x, t, t̄ , R̄2

)+ 4π

〈R〉 (t)

∫ t

0

∫
[0,1]3

H
(
t, s, t̄

)
G(x − y, t) J

(
y, s, t̄ , R̄2

)
dyds

= 4πG(x, t)

(
1 − RL(t, R̄2)

〈R〉 (t)

)
(3.66)

and (3.42) and (3.44) yield

U
(
t̄ , R̄2,R, x

)=
∫ t̄

0

exp(
∫ t̄

s
a (RL (λ,R)) dλ)

RL (s,R)
J
(
x, s, t̄ , R̄2

)
ds. (3.67)

Equations (3.44) and (3.65–3.67) provide the algorithm to compute U1(t̄ , η̄1, η̄2). In order
to simplify the computations we remark that

exp

(∫ t̄

s

a (RL (λ,R)) dλ

)
=

∂RL(t̄,R)

∂R

∂RL(s,R)

∂R

= 1
∂RL(s,R)

∂R

.

Therefore (3.65) and (3.67) can be written as

H
(
t, s, t̄

)=
∫

{R : RL(t,R)>0}

∂RL(t,R)

∂R

RL (s,R)
∂RL(s,R)

∂R

f1

(
R, t̄

)
dR, (3.68)

U
(
t̄ , R̄2,R, x

)=
∫ t̄

0

J (x, s, t̄ , R̄2)ds

RL(s, t̄ ,R)
∂RL(s,R)

∂R

. (3.69)

The problem can be further simplified taking into account that the relevant quantity that
must be computed in (3.63) is the integral

∫
K (x1 − x2)U

(
η1, η2, t̄

)(
1 − R̄2

〈R〉
)

f1
(
R̄2, t̄

)
dη̄2

= −
∫

{R̄2>0}
U
(
t̄ , R̄2,R1, x

)
K (x)

(
1 − R̄2

〈R〉
)

f1

(
R̄2, t̄

)
dR̄2dx.

With (3.69) we find that

Z
(
t̄ ,R1, x

) :=
∫

{R̄2>0}
U
(
t̄ , R̄2,R1, x

)
f1

(
R2, t̄

)(
1 − R̄2

〈R〉 (t̄)
)

dR̄2

=
∫ t̄

0

W(s, t̄, x)ds

RL (s,R1)
∂RL(s,R1)

∂R
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where

W
(
s, t̄ , x

)≡
∫

{R̄2>0}
J
(
x, s, t̄, R̄2

)
f1

(
R2, t̄

)(
1 − R̄2

〈R〉 (t̄)
)

dR̄2. (3.70)

Hence

∫
K
(
x1 − x2, t̄

)
U
(
η1, η2, t̄

)(
1 − R̄2

〈R〉
)

f1
(
R̄2, t̄

)
dη̄2 = −

∫
Z
(
t̄ ,R1, x

)
K
(
x, t̄

)
dx

= −
∫ t̄

0

∫
W(s, t̄, x)K(x, t̄)dx

RL(s, t̄ ,R1)
∂RL(s,R1)

∂R

ds.

(3.71)

If we multiply (3.66) by f1

(
R̄2, t̄

)
and integrate with respect to R̄2 we obtain that the func-

tion W(s, t̄, x) defined in (3.70) satisfies

W
(
t, t̄ , x

)+ 4π

〈R〉 (t)

∫ t

0
H
(
t, s, t̄

)(∫
[0,1]3

G(x − y, t)W
(
s, t̄ , y

)
dy

)
ds

= 4πG(x, t)

∫
{R̄2>0}

(
1 − RL(t, R̄2)

〈R〉 (t)

)(
1 − R̄2

〈R〉 (t̄)
)

f1
(
R̄2, t̄

)
dR̄2. (3.72)

Let us now formulate the resulting model. Combining (3.63) and (3.71) it follows that
the function f1 solves

∂f1(R, t̄)

∂ t̄
− ∂

∂R

((
1

(R)2 − 1

R 〈R〉
)

f1

(
R, t̄

))
(3.73)

=√
φ

∂

∂R

([
4π

R

∫ t̄

0

(
∫

[0,1]3 W(s, t̄, x)K (x)dx)

RL (s,R)
∂RL(s,R)

∂R

ds

]
∂f1(R, t̄)

∂R

−√
φ

4π

R

∫
K(x1 − x2)〈h(η1, t) h(η2, t)〉

(
1 − R2

〈R〉
)

dη2

)

where the function W satisfies the integral equation (3.72) with kernel H as in (3.68), RL is
given in (3.36, 3.37), K in (3.48) and h in (3.58). Notice that the left-hand side is the classical
LSW model. The term on the right yields a corrective effect due to pair interactions between
particles.

4 Self-Similar Solutions

4.1 The Equation in Self-Similar Variables

We now look for self-similar solutions of the model (3.68, 3.72, 3.73) in the limit of small
volume fraction. Notice that the volume fraction filled by the particles is

∫
[0,1/ξ0]3

∫
{R>0}

f1 (R, t)R3 dR dx = 1.
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Hence we look for self-similar solutions of the form

f1 (R, t) = t−4/3�(ρ), ρ = t−1/3R, (4.1)

such that ∫
{ρ>0}

ρ3�(ρ)dρ = 1. (4.2)

For such solutions the screening length ξ (t) has the form

ξ(t) = ξ∗t1/3 with
1

ξ 2∗
= 4π

∫ ∞

0
ρ�(ρ)dρ =: 4π B, (4.3)

the average radius 〈R〉 (t) is given by

〈R〉 (t) = r∗t1/3 with r∗ =
∫∞

0 ρ�(ρ)dρ∫∞
0 �(ρ)dρ

(4.4)

and RL

(
t, t̄ ,R

)
has the functional form

RL (t,R) = t1/3rL (τ, ρ) , (4.5)

τ = ln

(
t

t̄

)
, (4.6)

ρ = (t̄)−1/3 R. (4.7)

Taking into account (3.36) and (3.37) it follows that

∂rL (τ, ρ)

∂τ
= − 1

(rL (τ, ρ))2 + 1

r∗
1

rL (τ, ρ)
− 1

3
rL (τ, ρ) ,

rL (0, ρ) = ρ.

Notice that this formula is valid both for positive and negative values of rL (τ, ρ).
We write also G(x, t) and K (x) in self-similar form via

G(x, t) = 1

ξ∗t1/3
g

(
y

eτ/3

)
,

(4.8)

K (x) = 1

ξ∗t1/3
k

(
y

eτ/3

)
,

where τ is as in (4.6) and

g (z) = e−|z|

4π |z| and y = x

(t̄)1/3ξ∗
.

Using (4.1) and (4.5) we obtain with χ = s
t̄

the following formula for H
(
t, s, t̄

)
:

H
(
t, s, t̄

)= 1

(t̄)4/3

eτ/3

χ2/3

∫
{ρ : rL(τ,ρ)>0}

∂rL(τ,ρ)

∂ρ

rL (χ,ρ)
∂rL(χ,ρ)

∂ρ

�(ρ)dρ =: B

(t̄)4/3
κ (χ, τ ) . (4.9)
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It is natural to look for self-similar solutions of equation (3.72) of the form

W
(
t, t̄ , x

)= 1

(t̄)4/3
ω (τ, y) . (4.10)

We plug definitions (4.9) and (4.10) into (3.72) and change variables accordingly. Notice
that in the limit φ → 0 the integration in the cube [0,1/ξ0]3 becomes integration in the
whole space. Recalling also (4.3) we obtain

ω (τ, y) + 1

r∗eτ2/3

∫ τ

0
κ (χ, τ )

(∫
IR

3
g

(
y − ȳ

eτ/3

)
ω (χ, ȳ) dȳ

)
dχ

= 4π
√

4πB

eτ/3
g

(
y

eτ/3

)∫
{ρ>0}

(
1 − rL (τ, ρ)

r∗

)(
1 − ρ

r∗

)
�(ρ)dρ.

(4.11)

We also need to introduce self-similar variables for the function F . It is more convenient to
work with the integrated function and thus we define

∫ ∞

R

F (λ, t) dλ = 1

t
S(ρ, τ ) (4.12)

such that due to (5.15), (4.6) and (4.7) the function S satisfies

∂S(ρ, y, τ )

∂τ
− S(ρ, y, τ ) − 1

3
ySy(ρ, y, τ )

+
(

− 1

ρ2
+ [ 1

〈ρ〉 + φ
1
4 ζ(y, τ )]
ρ

− 1

3
ρ

)
∂S(ρ, y, τ )

∂ρ
= 0, (4.13)

where

Z(x, t) = φ1/4

t1/3
ζ(η, τ ).

In a similar manner we define

�(ρ) :=
∫ ∞

ρ

�(λ)dλ. (4.14)

The characteristics of (4.13) are given by

dy

dτ
= −y

3
, (4.15)

dr̄L (ρ, τ )

dτ
=
(

− 1

r̄2
L

+
[

1

r0
+ φ

1
4 ζ (y, τ )

]
1

r̄L

− r̄L

3

)
, (4.16)

dS

dτ
= S

with initial values for r̄L given by

r̄L(0, ρ) = ρ.

We can compute the stochastic properties of ζ(y, τ ) as follows

〈ζ(y, τ )〉 = 0
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and

〈ζ (y1, τ1) ζ (y2, τ2)〉 =√
φξ∗e1/3(τ2−τ1)λ

(
(y2 − y1)e

(τ2−τ1)
3 , e− (τ2−τ1)

3

)∫ ∞

rL(0,eτ2−τ1 )

� (ρ)dρ

(4.17)
for τ1 ≤ τ2, where

λ
(
ye

(τ2−τ1)
3 , e− (τ2−τ1)

3
)= e

(τ2−τ1)
3

∫
e−|z|e

τ2−τ1
3

|z|
e−|y−z|

|y − z|dz.

Finally, due to (4.1, 4.5, 4.8, 4.10, 4.12) we find that self-similar solutions to (3.73) are
given by

− 4

3
�(ρ) − 1

3
ρ

d�(ρ)

dρ
− d

dρ

((
1

(ρ)2 − 1

r∗ρ

)
�(ρ)

)

=√
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d

dρ

([
1√

4πB

1

ρ

∫ 1

0

∫
IR

3 (ω (χ, y) k (y)) dy

(χ)2/3 rL (χ,ρ)
∂rL(χ,ρ)

∂ρ

dχ

]
d�(ρ)

dρ

)

−√
φ

d

dρ

(
4π

ρ

∫
K(y1 − y2)

∂2

∂ρ1∂ρ2
C(ρ1, ρ2, y1, y2)

(
1 − ρ2

r∗

)
dρ2dy2

)
, (4.18)

where

C(ρ1, ρ2, y1, y2) := 〈S(ρ1, y1, τ ) S(ρ2, y2, τ ) − �(ρ1)�(ρ2)〉
is stationary, since S is a stationary stochastic process.

In the rest of this paper we will study solutions of (4.18). This equation is a singular
perturbation of the classical LSW equation. We will see later that the main effect of the term
on the right hand side of (4.18) is to introduce a boundary layer near the end of the support of
the classical LSW solution. As a first step is to show that the last term in (4.18) is negligible.
The corresponding computations can be found in Appendix 3, Sect. 5.3.2.

4.2 Perturbative Analysis of Self-Similar Solutions

The results of Appendix 3, Sect. 5.3.2 show that it suffices to study solutions of

− 4

3
�(ρ) − 1

3
ρ

d�(ρ)

dρ
− d

dρ

((
1

(ρ)2 − 1

r∗ρ

)
�(ρ)

)

=√
φ

d

dρ

([
1√

4πB

1

ρ

∫ 1

0

∫
IR

3 (ω (χ, y) k (y)) dy

(χ)2/3 rL (χ,ρ)
∂rL(χ,ρ)

∂ρ

dχ

]
d�(ρ)

dρ

)
. (4.19)

We are now going to construct solutions of (4.19) that are perturbations of the LSW self-
similar solutions. In fact, the appearance of the other self-similar solutions to leading order
can be ruled out in principle by the argument already given in [6]. In that case the structure
of the characteristic curves in self-similar variables implies that a fraction of the particles
would remain trapped in some region of the form {R ≥ at1/3}. This is however incompatible
with the conservation of volume of particles.

Self-similar solutions satisfy the equation

−4

3
�(ρ) − 1

3
ρ

d�(ρ)

dρ
− d

dρ

((
1

ρ2
− 1

r0ρ

)
�(ρ)

)
= 0. (4.20)
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Fig. 1 Diffusion coefficient

Let us denote by �LSW (ρ) the solution of (4.20) with maximal support. Therefore

r̄0 =
(

2

3

) 2
3

,

�LSW (ρ) = α
ρ2 exp(− ρ

ρLSW −ρ
)

(1 + ρ

2ρLSW
)7/3(1 − ρ

ρLSW
)

11
3

(4.21)

where

ρLSW =
(

3

2

) 1
3

and where α > 0 is a constant such that (4.2) is satisfied. We define

D (ρ) := 1√
4πB

∫ 1

0

∫
IR3 (ω (χ, y) k (y)) dy

(χ)2/3 rL (χ,ρ)
∂rL(χ,ρ)

∂ρ

dχ. (4.22)

In order to be able to apply perturbative arguments it is crucial to determine if the function
D (ρ) is positive at least in a neighborhood of ρ ≈ ρLSW .

It turns out that the proof of positivity is somewhat tedious. In Appendix 2 we present
a method to reformulate the problem such that it can be solved numerically in an efficient
way. Simulations indeed show, that D is positive and has the form as shown in Fig. 1.

4.3 Boundary Layer Structure

In this section we study the solution �(ρ) of (4.19) in the limit φ → 0 using asymptotic
WKB methods. Combining (4.19) and (4.22) we obtain

−4

3
�(ρ) − 1

3
ρ

d�(ρ)

dρ
− d

dρ

((
1

(ρ)2 − 1

r∗ρ

)
�(ρ)

)
=√

φ
d

dρ
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D (ρ)

ρ

]
d�(ρ)

dρ

)
.

(4.23)
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In the region where �(ρ) is of order one we can approximate the solution of (4.23) by
�LSW as given in (4.21).

Integrating (4.23) and using (4.14) we obtain

−� (ρ) −
(

1

3
ρ + 1

ρ2
− 1

r∗ρ

)
d� (ρ)

dρ
=√

φ

([
D (ρ)

ρ

]
d2� (ρ)

d (ρ)2

)
. (4.24)

To leading order r0 can be approximated as ( 2
3 )2/3. However, the presence of a boundary

layer for ρ1 ≈ ρLSW introduces a small correction in the value of r0. We write

r∗ = r̄0 + φ1/4 r1 (4.25)

where r̄0 = ( 2
3 )2/3.

In order to study the behaviour of the solutions of (4.24) away from the critical region
ρ ≈ ρLSW it is convenient to introduce the WKB change of variables

� (ρ) = exp
(
φ−1/2U (ρ)

)

such that

−1 −
(

1

3
ρ + 1

ρ2
− 1

r∗ρ

)
U ′(ρ)√

φ
= 1

B

D(ρ)

ρ

(
U ′′(ρ) + U ′(ρ)2

√
φ

)
. (4.26)

We see that there are two possibilities for U . Either U ∼ O(
√

φ), then

1 +
(

1

3
ρ + 1

ρ2
− 1

r∗ρ

)
U ′(φ)√

φ
= 0, (4.27)

or U ∼ O(1) where

−
(

1

3
ρ + 1

ρ2
− 1

r∗ρ

)
U ′(φ) =√

φ

[
D (ρ)

ρ

](
U ′(φ)

)2
. (4.28)

For ρ > ρLSW we do not have physically reasonable solutions of (4.27). In fact, it is easily
seen that U(ρ) ∼ −√

φ
lnρ

3 for ρ → ∞, whence �(ρ) ∼ 1
ρ3 and thus

∫
ρ2�(ρ)dρ is not

finite. Therefore the asymptotics of the solutions is given by (4.28) for supercritical particles.
Taking into account (4.14) we obtain the following approximation of �(ρ) for ρ > ρLSW

�(ρ) = β exp

(
− 1√

φ

∫ ρ

ρLSW

λ

D (λ)

[
1

3
λ + 1

λ2
− 1

r∗λ

]
dλ

)
(4.29)

for some suitable constant β . Notice that the resulting solution decays exponentially fast as
it could be expected.

We are going to show that there is a unique value of r1, such that the solution in (4.29)
can be matched with �LSW as given in (4.21). In the transition region we have ρ ≈ ρLSW

and using Taylor’s expansion we obtain with (4.25) the following approximation for (4.24)

−� (ρ) −
((

2

3

)1/3

(ρ − ρLSW )2 + φ1/4r1
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2

)
d� (ρ)
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([
D (ρLSW )
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]
d2� (ρ)

d (ρ1)
2

)
.

(4.30)
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We now introduce the change of variables

ρ − ρLSW = (φ)1/8 x, S = φ−3/8U.

Then, (4.30) becomes

A(φ)1/8 Sxx + A(Sx)
2 +

[(
2

3

)1/3

x2 + �0

]
Sx + 1 = 0 (4.31)

where

�0 = r1

ρLSW (r̄0)
2 and A =

[
D (ρLSW )

ρLSW

]
.

This equation can be approximated to leading order, away from boundary layers, by

A(Sx)
2 +

[(
2

3

)1/3

x2 + �0

]
Sx + 1 = 0. (4.32)

The solution of (4.32) that matches with the solution of (4.27) in the region where φ1/8 �
(ρLSW − ρ) � 1, is

S̃x = 1

2A

[
−
[(

2

3

)1/3

x2 + �0

]
+
√[(

2

3

)1/3

x2 + �0

]2

− 4A

]
. (4.33)

Notice that Sx ∼ −( 3
2 )1/3 1

x2 as x → −∞.

We argue now that if follows from (4.33) that 4A ≥ (�0)
2. Indeed, otherwise the function

Sx in (4.33) is smooth for any x ∈ IR and has the asymptotics S ∼ C + ( 3
2 )1/3 1

x
as x →

∞. Such a solutions matches in the region (ρ − ρLSW ) � 1, (ρ − ρLSW ) � (φ)1/8 with a
nontrivial solution of (4.27) which is not possible as explained before. Therefore, in the
limit φ → 0 we must have 4A ≥ (�0)

2. Let us now examine the case in which 4A ∼ (�0)
2

as φ → 0, since a similar argument will rule out the possibility 4A > (�0)
2. To this end we

define a new variable δ as

�0 = (4A)
1
2 + δ

where δ → 0 as φ → 0. We define a new set of variables by

x = (A)3/8

(
3

2

)1/8

φ1/16X,

√
ASx + 1 = (A)1/8

(
2

3

)1/8

φ1/16ψ.

Then (4.31) becomes to leading order

ψX + (ψ)2 − X2 = σ :=
(

3

2

)1/4
δ

(A)3/4 (φ)1/8 (4.34)

with the matching condition, as a consequence of (4.33), which reads

ψ ∼ |X| as X → −∞. (4.35)
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An analysis of the phase portrait shows for any value of σ there is a unique solution of
(4.34) and (4.35). There also exists for any σ a unique solution of (4.34) with the asymptotics

ψ ∼ −X as X → ∞. (4.36)

It turns out that the only value of σ for which the solution satisfies both, (4.35) and (4.36),
is σ = −1. This can be seen with the change of variables ψ(x) = −x + φ(x). Then (4.34)
becomes

φx = 2xφ − φ2 + σ + 1

and we see that the only value for which φ(x) → 0 as |x| → ∞ is for σ = −1.
After the transition described above the resulting solution matches with the behaviour

Sx = 1

2A

[
−
[(

2

3

)1/3

x2 + �0

]
−
√[(

2

3

)1/3

x2 + �0

]2

− 4A

]

and this behaviour yields a exponential decay according to (4.28). To leading order

� = γ exp

(
− 1

3A

(
2

3

)1/3
(ρ − ρLSW )3

√
φ

)

as (φ)1/8 � ρ − ρLSW � 1, where γ is a multiplicative constant which can be determined
by the higher order terms in the matched asymptotic expansion described above.
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Appendix 1: Change in Capacity Coefficients

In order to approximately evaluate the second term in (3.29) we compute the difference

[ Ci,j

4πRiRj
− C

(2)
i,j

4πR
(2)
i

R
(2)
j

] for i �= j . This difference in the capacity coefficients is due to two

different effects, namely the presence in the computation of the coefficients Ci,j of an ad-
ditional particle η2, and the difference on the radii of the remaining particles. In order to
measure these effects we make the dependence on the radii explicit by writing

Ci,j

4πRiRj

− C
(2)
i,j

4πR
(2)
i R

(2)
j

= 1

4πRiRj

[
Ci,j ({Rk}) − C

(2)
i,j ({Rk})

]

+
[

C
(2)
i,j ({Rk})
4πRiRj

− C
(2)
i,j ({R(2)

k })
4πR

(2)
i R

(2)
j

]
. (5.1)

In order to compute the first term on the right-hand side of (5.1) let us denote as v the
difference of the potentials associated to the computation of the capacities Ci,j ({Rk}) and
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C
(2)
i,j ({Rk}) . This potential vanishes at the boundary of all the particles except the particle η2.

Taking into account (2.17) and (2.18) we find

v = −4πRi

√
φG(xi − x2) at ∂B2 (x2)

and thus

Ci,j ({Rk}) − C
(2)
i,j ({Rk}) = − 1

r0
√

φ

∫
∂Bj

∂(vj − v
(2)
j )

∂n
dS

= − 1
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φ

∫
∂Bj

∂(vj − v
(2)
j )

∂n
vj dS

= 1

r0
√

φ

∫
�\∪Bi

∇v · ∇vj

= − 1

r0
√

φ

∫
∂B2

∂vj

∂n
v dS

∼ C2,j v = 4πRiC2,j

√
φG(xi − x2) . (5.2)

Using the approximation (3.30) we find

Ci,j ({Rk}) − C
(2)
i,j ({Rk}) =√

φ (4πRi) (4πR2) (4πRj)G(xi − x2)G(x2 − xj ), i �= j.

(5.3)
To treat the last term in (5.1) we need to compute the change in the capacity coeffi-
cients C

(2)
i,j ({Rk}) due to the change of the radii. Let us suppose that we modify just the

radius of a single particle Rk → Rk + δRk where for the moment k �= i, j. The differ-
ence of the potentials associated to the corresponding capacity coefficients, denoted by
v, vanishes at all the particles except at the boundary of the particle ηk . Near the particle
xk the potential associated to the capacity coefficient C

(2)
i,j ({Rk}) can be approximated by

v = √
φ

C
(2)
i,k

4π
( 1

|x−xk | − 1√
φR

(2)
k

) such that v = √
φ

C
(2)
i,k

4π(R
(2)
k

)2
δRk at ∂Bk (xk), whence the charge

induced at the particle ηj by this change of the radius is

√
φC

(2)
k,j

C
(2)
i,k

4π (Rk)
2 δRk = φC

(2)
k,j

C
(2)
i,k

4π (Rk)
2 rk, k �= i, j,2. (5.4)

Similarly we can show, that the change of the magnitude
Cij

4πRiRj
under changes of the radii

Rj and Ri are quadratic in ∂Rj and ∂Ri . This can be expected since (3.7) suggests that the

quantity
Cij

4πRiRj
basically does not depend on Ri and Rj . We omit the full proof.

Therefore, in order to compute the last term in (5.1) it is enough to add the contributions
due to the changes in the radii δRk with k �= i, j,2. Then to leading order

[
C

(2)
i,j ({Rk})
4πRiRj

− C
(2)
i,j ({R(2)

k })
4πR

(2)
i R

(2)
j

]
= φ

∑
k �=i,j,2

C
(2)
i,k C

(2)
k,j

4π(R
(2)
k )2

rk

4πR
(2)
i R

(2)
j

(5.5)

and combining (5.1), (5.3) and (5.5) we obtain
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Ci,j

4πRiRj

− C
(2)
i,j

4πR
(2)
i R

(2)
j

=√
φ (4πR2) (4πG(xi − x2))G(x2 − xj )

+ φ
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i,k C
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(2)
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4πR
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, i �= i, j. (5.6)

Appendix 2: Positivity of the Diffusion Coefficient

In this appendix we sketch a procedure to transform the original problem (4.11) and (4.18)
which determine the coefficient D(ρ) (cf. (4.22)) into an equation which is more convenient
to solve numerically.

To that aim it is convenient to introduce

J1 (ρ) = 4

3
log

(
1 + ρ

2ρLSW

)
+ 5

3
log

(
1 − ρ

ρLSW

)
+ ρ

(ρLSW − ρ)
. (5.7)

Using this function the equations for the characteristics in self-similar variables take the
simple form

J1 (rLSW (τ,ρ)) − J1 (ρ) = −τ

where J1(ρ) is as in (5.7).
We can now transform (4.11) making the following changes of variables z = rLSW (τ,ρ),

dz = ∂rLSW (τ,ρ)

∂ρ
dρ. After introducing this change of variables in (4.11) we take the Fourier

transform with respect to η. Then we obtain after some lengthy computations we obtain

D (ρ) ≡ 1

2π2

∫ 0

−∞

(
l(J−1

1 (J1 (ρ) − s))

J ′
1 (ρ)

e
s
3 W (s)

)
ds, (5.8)

where

l (X) ≡ J ′
1 (X)

X
, (5.9)

W (s) ≡
∫ s

−∞

(
e− 2(s−τ )

3

(
1 − J−1

1 (s − τ)

r∗

)∫ ∞

0
f (τ, r) dr

)
dτ (5.10)

and f is the solution of

(
1 + r2e

2τ
3

)
f (τ, r) +

∫ τ

−∞
G(τ − s)f (s, r) ds = e

2τ
3

(
1 − J−1

1 (−τ)

r∗

)
(5.11)

where

G(τ) = e− τ
3

r∗

∫ ∞

0

e−sJ ′
1(J

−1
1 (s + τ))

J−1
1 (s + τ)

ds

J ′
1(J

−1
1 (s))

.

Formula (5.8) is valid for ρ < ρLSW . In the region ρ > ρLSW the computation is similar
with J1 replaced by J2 given by

J2 (ρ) = 4

3
log

(
1 + ρ

2ρLSW

)
+ 5

3
log

(
ρ

ρLSW

− 1

)
+ ρ

(ρLSW − ρ)
.
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Appendix 3: On the Fluctuations of F

5.3.1 Estimating the Fluctuations of F

Our goal is to approximate the term in (3.24) which is due to the fluctuations

I ≡
∫ (∫ [

F
(
η1,ω0,N , t

)− f1 (η1, t)
] [

F
(
η2,ω0,N , t

)− f (η2, t)
]
dνN

)
dR2. (5.12)

To this end we recall the definition of F in (3.23). We can approximate the function
R

(τk)

k,0 (ηk,ω0,N , t) using a stochastic differential equation. We can rewrite (3.27) as

dR
(2)
k

dt
= − 1

(R
(2)
k )2

+ 1

〈R〉
1

R
(2)
k

− 1

R
(2)
k

[√
φ
∑
j �=k,2

C
(2)
k,j

4πR
(2)
k R

(2)
j

+ 1

〈R〉
]
.

We are interested in computing the fluctuations to the leading order. Thus it suffices to
approximate C

(2)
k,j by (3.7) to obtain

dR
(2)
k

dt
= − 1

(R
(2)
k )2

+ 1

〈R〉
1

R
(2)
k

+ 1

R
(2)
k

[√
φ
∑
j �=k,2

e
− |xk−xj |

ξ

|xk − xj |χ{Rj >0} − 1

〈R〉
]
. (5.13)

As in the last subsection we use again the key assumption that for all times most of the
particles are to leading order independently distributed. With this assumption we can ap-
proximate the term between brackets in (5.13) by means of a “noise” term that we will
denote as Z (x, t). Then

dR
(2)
k

dt
= − 1

(R
(2)
k )2

+ 1

〈R〉
1

R
(2)
k

+ Z (x, t)

R
(2)
k

(5.14)

where

〈Z (x, t)〉 = 0

due to the definition of the screening length.
Using (3.23) and (5.14) we find that F evolves according to

∂F

∂t
+ ∂

∂R

((
− 1

R2
+ [ 1

〈R〉 + Z (x, t)]
R

)
F

)
= 0. (5.15)

In a strict mathematical sense, we should take the initial data F(η,0) = f0(R). However,
such an approximation would fail for very long times. In practice we will use (5.15) for
self-similar solutions where it is possible to argue as in some previous approximations for
the characteristics (cf. (3.36, 3.37)). For a given time t̄ we can use the approximation (5.15)
for times t � t̄ , and this is the only range of times where we will need to compute the
fluctuations because their effect disappears in (5.12) for particles that are separated distances
longer than the screening length as it will be seen below.

We conclude this section by deriving some further properties of Z. In the limit φ → 0 we
can also assume that the noise Z is Gaussian and it is possible to compute its correlations in
time and space. We have with
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Z (x, t) =
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and in the limit N → ∞ we find that
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f (R1, t1) dR1.

Assuming that t1 ≤ t2 and using the definition of RL(t1, t2,0) in (3.36), (3.37) it follows that

〈Z (x1, t1)Z (x2, t2)〉 = φ�(x2 − x1, t1, t2)
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If t1 and t2 are comparable then �(x2 − x1, t1, t2) is of order ξ, and the integral∫∞
RL(t1,t2,0)

f (R1, t1)dR1 is of order N ∼ φ−1/2. Then 〈Z(x1, t1)Z(x2, t2)〉 is of order φ1/2

whence |Z| is of order φ
1
4 .

5.3.2 Estimating the Correlation Function C(ρ1, ρ2, y1, y2)

Due to the exponential decay of the correlations the main contribution to the integral

I (ρ1) :=
∫

K(y1 − y2)
∂2

∂ρ1∂ρ2
C(ρ1, ρ2, y1, y2)

(
1 − ρ2

r∗

)
dρ2dy2

comes from points y1, y2 whose distance is of the order of the screening length, which is
now normalized to 1.

Due to (4.15) the distance between two characteristics y1(τ ) and y2(τ ) increases expo-
nentially as τ → −∞. As a consequence, the functions S(ρ1, y1(τ ), τ ) and S(ρ2, y2(τ ), τ )

are independent variables as τ → −∞. This fact will be used repeatedly in the following.
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Let us begin with the formula

〈S(ρ1, y1,0)S(ρ2, y2,0)〉 − �(ρ1)�(ρ2)

= 〈(S(ρ1, y1,0) − �(ρ1))(S(ρ2, y1,0) − �(ρ2))〉
= 〈(S(rL(ρ1,0), y1,0) − �(rL(ρ1,0)))(S(rL(ρ2,0), y1,0) − �(rL(ρ2,0)))〉.

The characteristics (in the radius variable) for S are the “stochastic” curves r̄L(ρ1, τ ).

It will be convenient to define a new function S̃ evolving by means of the characteris-
tics rL(ρ1, τ ) that are the characteristics for the equation satisfied by �. By assumption
S(ρ1, y1,0) = S̃(ρ1, y1,0). Notice that S̃ solves the same equation as �. (There are some
additional corrective terms that are very small, of order

√
φ. Moreover, since they are the

same in both equations they would cancel in the next arguments.) Using then the evolution
by characteristics for the difference S̃ − � we can write

We now use the fact that the functions S(rL(ρ1,0), y1,0) and �(rL(ρ1,0)) evolve accord-
ing to the same equation. Notice that we are ignoring the term r̄L(ρ1,0) in this argument.
Using the evolution by characteristics, and neglecting for the moment the small noise term
that would be the same both for S(rL(ρ1, τ ), y1, τ ) and �(rL(ρ1, τ )) it follows that their
effect cancels out and we are left only with the “leading part”. Then

〈(S (rL (ρ1,0) , y1,0) − � (rL (ρ1,0))) (S (rL (ρ2,0) , y2,0) − � (rL (ρ2,0)))〉
= 〈(S̃ (rL (ρ1,0) , y1,0) − � (rL (ρ1,0)))(S̃ (rL (ρ2,0) , y2,0) − � (rL (ρ2,0)))〉
= e−2τ∗ 〈(S̃(rL(ρ1, τ

∗), y1e
− τ∗

3 , τ ∗) − �(rL(ρ1, τ
∗)))

× (S̃(rL(ρ2, τ
∗), y2e

− τ∗
3 , τ ∗) − �(rL(ρ2, τ

∗)))〉.

It is not completely obvious that the variables (S̃(rL(ρ1, τ
∗), y1e

− τ∗
3 , τ ∗) − �(rL(ρ1, τ

∗)))
and (S̃(rL(ρ2, τ

∗), y2e
− τ∗

3 , τ ∗) − �(rL(ρ2, τ
∗))) are uncorrelated, because although the

points y1e
− τ∗

3 , y2e
− τ∗

3 are very separated for τ ∗ → −∞ we are using the value of
S(ρ1, y1,0) in the definition of S̃, and the difference between rL(ρ1, τ ), r̄L(ρ1, τ ) for τ of
order one could give some contribution. Therefore, we need some additional computations.
Let us use the notation

S̃1 = S̃(rL

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗), S̃2 = S̃(rL

(
ρ2, τ

∗) , y2e
− τ∗

3 , τ ∗),

S1 = S(rL

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗), S2 = S(rL

(
ρ2, τ

∗) , y2e
− τ∗

3 , τ ∗),

�1 = �
(
rL

(
ρ1, τ

∗)) , �2 = �
(
rL

(
ρ2, τ

∗)) .
We then need to compute

〈
(S̃1 − �1)(S̃2 − �2)

〉
= 〈((S̃1 − S1) − (�1 − S1))((S̃2 − S2) − (�2 − S2))〉

= 〈(S̃1 − S1)(S̃2 − S2)〉 − 〈(S̃1 − S1)(�2 − S2)〉
− 〈(�1 − S1)(S̃2 − S2)〉
+ 〈(�1 − S1)(�2 − S2)〉.
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The variables �1 − S1 and �2 − S2 are uncorrelated, and 〈�1 − S1〉 = 〈�2 − S2〉 = 0.

Then, the last term disappears. In order to estimate the remaining terms we need to approx-
imate (S̃i − Si), i = 1,2. Integrating by characteristics

S (ρ1, y1,0) = e−τ∗
S(r̄L

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗),

S (ρ1, y1,0) = e−τ∗
S̃(rL

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗)

whence

S(r̄L

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗) = S̃(rL

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗) = S̃1

and an analogous formula holds true for S̃2. We introduce

ε(ρi, yi, τ
∗) := r̄L(ρi, yi, τ

∗) − rL(ρi, τ
∗), i = 1,2

such that

S̃1 − S1 = S(r̄L

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗) − S(rL

(
ρ1, τ

∗) , y1e
− τ∗

3 , τ ∗)

= ∂�

∂ρ1

(
rL

(
ρ1, τ

∗)) ε1

(
ρ1, τ

∗) .
Notice that it is enough to obtain the linear approximation, because all the terms above are
quadratic. Hence

〈(S̃1 − �1)(S̃2 − �2)〉
= 〈(S̃1 − S1)(S̃2 − S2)〉 − 〈(S̃1 − S1)(�2 − S2)〉 − 〈(�1 − S1) (S̃2 − S2)〉

= ∂�

∂ρ1

(
rL

(
ρ1, τ

∗)) ∂�

∂ρ2

(
rL

(
ρ2, τ

∗)) 〈ε(ρ1, y1, τ
∗) ε2(ρ2, y2, τ

∗)
〉

− ∂�

∂ρ1

(
rL

(
ρ1, τ

∗)) 〈ε(ρ1, y1, τ
∗) (�2 − S2)

〉

− ∂�

∂ρ2

(
rL

(
ρ2, τ

∗)) 〈(�1 − S1) ε(ρ2, y2, τ
∗)
〉
.

Now ε(ρ1, y1, τ
∗) and �2 − S2 are uncorrelated, and the same is true for �1 − S1 and

ε(ρ2, y2, τ
∗). The we arrive at

〈S (ρ1, y1,0) S (ρ2, y2,0)〉
= � (ρ1)� (ρ2) + lim

τ∗→−∞
∂�

∂ρ1
(ρ1)

∂�

∂ρ2
(ρ2)

〈
ε
(
ρ1, y1, τ

∗) ε (ρ2, y2, τ
∗)〉 . (5.16)

In the final step we compute 〈ε(ρ1, y1,0, τ
∗)ε(ρ2, y2,0, τ

∗)〉. Linearizing (4.16) we obtain

dε (ρ1, y1, τ )

dτ
= ∂

∂rL

(
− 1

r2
L

+ 1

r∗
1

rL

− rL

3

)
ε (ρ1, τ ) + φ

1
4 ζ (y, τ )

rL

,

ε (ρ1, y1,0) = 0
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whose solution is given by

ε (ρ1, y, τ ) = −φ
1
4
∂rL (ρ1, τ )

∂ρ1

∫ τ̄

τ

ζ (y (s) , s)

rL (ρ1, s)

ds
∂rL
∂ρ1

(ρ1, s)
,

y (s) = ye−s/3.

Hence

〈ε(ρ1, τ
∗)ε(ρ2, τ

∗)〉

=√
φ

∂rL(ρ1, τ
∗)

∂ρ1

∂rL(ρ2, τ
∗)

∂ρ2

∫ τ̄

τ∗

ds1

rL (ρ1, s1)
∂rL
∂ρ1

(ρ1, s1)

∫ τ̄

τ∗

ds2

rL (ρ2, s2)
∂rL
∂ρ1

(ρ2, s2)

× 〈
ζ
(
y1e

−s1/3, s1

)
ζ
(
y2e

−s2/3, s2

)〉
. (5.17)

Using (4.17) and the invariance of ζ under translations we find

〈ζ (y1e
−s1/3, s1

)
ζ
(
y2e

−s2/3, s2

)〉 = 〈
ζ (0, s1) ζ

(
ye−s2/3, s2

)〉

=√
φξ0e

(s̄2−s̄1)
3 λ

(
y2e

−s2/3e
(s̄2−s̄1)

3 , e− (s̄2−s̄1)
3

)∫ ∞

rL(0,s̄1−s̄2)

� (ρ)dρ
(5.18)

where

s̄1 = min {s1, s2} , s̄2 = max {s1, s2} .

We also recall that
√

1ξ∗ = (4πB)−1/2 = O(1).
We now use (5.17),(5.18) and the identity

∫ ∞

rL(0,τ )

�(ρ)dρ = Ceτ ,

for some suitable normalization constant C. For sufficiently large |τ ∗| we arrive after some
computations at∫

dy2K (y2) 〈ε (ρ1, y1, τ
∗) ε (ρ2, y2, τ

∗)〉
= C

[√
φξ∗

]√
φ

∂rL (ρ1, τ
∗)

∂ρ1

∂rL (ρ2, τ
∗)

∂ρ2

×
∫ τ̄

−∞

ds1

rL (ρ1, s1)
∂rL
∂ρ1

(ρ1, s1)

∫ 0

−∞

ds2e
2s2/3

rL (ρ2, s2)
∂rL
∂ρ1

(ρ2, s2)
e

2(s̄1−s̄2)
3

×
[∫ ∫

e−|z|e
(s̄2−s̄1)

3

|z|
e−|λ−z|

|λ − z|K (λ)dzdλ

]
. (5.19)

We can simplify this formula for ρ1 ≈ ρLSW . Indeed, in such a region rL (ρ1, s1) ≈ ρLSW

and ∂rL
∂ρ1

(ρ1, s1) ≈ 1. Then, combining (5.16) and (5.19), we find

I (ρ1) = ∂�(ρ1)

∂ρ1

∫ [
∂

∂ρ2
[�(ρ2)Q(ρ2)]

](
1 − ρ2

r∗

)
dρ2
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where

Q(ρ2) := ∼ C

ρLSW

[√1ξ∗]
√

φ
∂rL (ρ2, τ

∗)
∂ρ2

∫ τ̄

−∞
ds1

∫ τ̄

−∞

ds2e
− 2(τ̄−s2)

3

rL (ρ2, s2)
∂rL
∂ρ1

(ρ2, s2)
e

2(s̄1−s̄2)
3

×
[∫ ∫

e−|z|e
(s̄2−s̄1)

3

|z|
e−|λ−z|

|λ − z|K (λ)dzdλ

]
.

After integrating by parts we find

I (ρ1) = 1

r∗
∂�(ρ1)

∂ρ1

[∫
�(ρ2)Q(ρ2) dρ2

]
.

It seems that Q is of order
√

φ. Notice however, that ∂rL(ρ2,τ∗)

∂ρ2
converges to 0 as τ ∗ → −∞

if ρ2 < ρLSW . Then
∫

�(ρ2)Q(ρ2) dρ2 = o(
√

φ), whence this term is negligible in (4.18).
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